

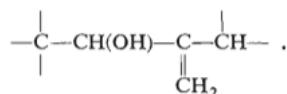
NARDIIN, A NEW *ent*-KAURANE DITERPENOID  
FROM THE LIVERWORT *Nardia Scalaris*\*

Ivan BENEŠ, Tomáš VANĚK and Miloš BUDĚŠÍNSKÝ

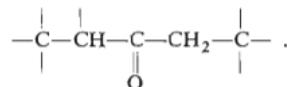
*Institute of Organic Chemistry and Biochemistry,  
Czechoslovak Academy of Sciences, 166 10 Prague 6*

Received June 3rd, 1981

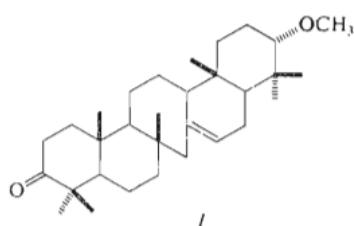
An *ent*-kaurane diterpenoid nardiin(II) was isolated from the chloroform extract of *Nardia scalaris* S. GRAY corr. TREV. Its structure was determined by means of  $^1\text{H}$  NMR spectroscopy and garryfoline-cuauchichicine rearrangement as *ent*-15 $\alpha$ -hydroxy-9(11),16-kauradien-6-one.


According to most botanists the liverworts represent an independent evolutionary line of plants and they are classified, together with mosses (*Musci*), among *Bryophyta* (cf. Hébant<sup>1</sup>). From the chemical point of view it is, therefore, characteristic of liverworts that they contain various terpenoid substances, primarily mono-, sesqui-, and diterpenoids, of which some are enantiomeric in comparison with similar compounds in higher plants<sup>2</sup>.

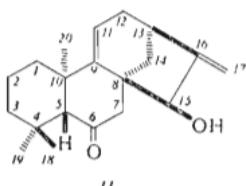
In the case of the chemically little investigated liverwort *Nardia scalaris* S. GRAY corr. TREV. gas chromatographic analysis of the essential oil<sup>3</sup> was carried out and the same method detected lunularic acid with lunularin<sup>4</sup> and sorbitol<sup>5</sup>. Our group recently described<sup>6</sup> the presence of (+)-21 $\alpha$ -methoxyserrat-14-en-3-one (I). The aim of this study is the description of nardiin, a new *ent*-kaurene diterpenoid, isolated now from this liverwort.


From the chloroform extract of dry liverwort we isolated compound II, m.p. 177–180°C by means of column chromatography and preparative HPLC. Its elemental composition was  $\text{C}_{20}\text{H}_{28}\text{O}_2$  and its infrared spectrum displayed bands characteristic of the hydroxyl group ( $3460\text{ cm}^{-1}$ ), a keto group ( $1689\text{ cm}^{-1}$ ) and a double bond ( $1659\text{ cm}^{-1}$ ). The  $^1\text{H}$  NMR spectrum demonstrated the presence of three tertiary methyl groups (singlets at  $\delta$  1.10, 1.14, and 1.15), an exomethylene group (unresolved multiplets at  $\delta$  5.12 and 5.15), a trisubstituted double bond in the vicinity of a methylene group (broadened triplet at  $\delta$  5.56 with  $J = 3.5\text{ Hz}$ , interacting with the multiplets at  $\delta$  2.09 and 2.52, belonging to the  $\text{CH}_2$  group) and one  $\text{CH}-\text{O}$  hydrogen (multiplet at  $\delta$  4.14). *In situ* reaction with trichloroacetyl isocyanate demonstrated the presence of a secondary hydroxyl ( $\text{CH}-\text{O}$  hydrogen is shifted

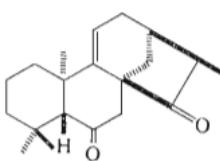
\* Part CCLXVI in the series On Terpenes; Part CCLXV: This Journal 47, 670 (1982).


by acylation by 1.41 ppm downfield and the signal of the NH proton appears at  $\delta$  8.43). Only allylic couplings of the CH—O proton with the exomethylene hydrogens ( $^4J = 2.0$  and 2.5 Hz) lead to its localization into the vicinity of the exomethylene group, the hydrogen atoms of which further interact merely with the proton at  $\delta$  2.78 which leads summarily to the formation of the fragment




Further the hydrogens in the neighbourhood of the carbonyl group are also shifted downfield. The doublets at  $\delta$  2.39 and 2.61, together with the singlet at  $\delta$  3.11 indicate the fragment




From these facts and from the optical rotation value ( $[\alpha]_D = -29^\circ$ ) it may be judged that the isolated diterpenoid has probably an *ent*-kaurane skeleton with a keto group in the position 6, a hydroxyl group in the position 15 and a double bond between the carbons  $\text{C}_{(9)}$  and  $\text{C}_{(11)}$ . From the distinct upfield shift (-0.77 ppm) of the singlet  $\text{C}_{(5)}$ —H after acylation with trichloroacetyl isocyanate, in consequence of the change of the van der Waals effect of the sterically close  $\text{C}_{(15)}$ —OR group, the  $\beta$ -configuration of the hydroxyl group in the position 15 follows. This enabled a direct proof of the *ent*-kaurane skeleton by means of the garryfoline-cuauchichicine rearrangement<sup>7</sup>. Hydrogenation of nardiin (II) on 10% Pd—C (ref.<sup>8</sup>) afforded III in



I



II



III

TABLE I  
Proton NMR parameters of compounds *II* and *III* in deuteriochloroform

| Compound           | Chemical shifts <sup>a</sup> |                    |                     |                     |                    |                     |                    |                     |                    |                    |                     |                     |                     |                    |                    |
|--------------------|------------------------------|--------------------|---------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|
|                    | H-5                          | H-7                | H-7'                | H-11                | H-12               | H-12'               | H-13               | H-14                | H-14'              | H-15               | H-17                | H-17'               | 18-CH <sub>3</sub>  | 19-CH <sub>3</sub> | 20-CH <sub>3</sub> |
| II                 | 3.11                         | 2.39               | 2.61                | 5.56                | 2.09               | 2.52                | 2.78               | 1.54                | 1.70               | 4.14               | 5.12                | 5.15                | 1.10 <sup>b</sup>   | 1.14 <sup>b</sup>  | 1.15 <sup>b</sup>  |
| II <sup>c</sup>    | s                            | bd                 | d                   | bt                  | dm                 | ddd                 | bd                 | d                   | dd                 | um                 | um                  | um                  | s                   | s                  | s                  |
| II <sup>c</sup>    | 2.34                         | 2.55               | 2.61                | 5.61                | 2.24               | 2.59                | 2.86               | 1.64                | 1.91               | 5.55               | 5.18                | 5.04                | 1.04 <sup>b</sup>   | 1.11 <sup>b</sup>  | 1.14 <sup>b</sup>  |
| III <sup>d</sup>   | s                            | bd                 | d                   | bt                  | dm                 | ddd                 | bt                 | d                   | dd                 | um                 | um                  | um                  | s                   | s                  | s                  |
| III <sup>d</sup>   | 2.67                         | 2.36               | 2.47                | 5.59                | 2.25               | 2.41                | e                  | e                   | 1.97               | —                  | —                   | —                   | 1.09 <sup>b</sup>   | 1.16 <sup>b</sup>  | 1.17 <sup>b</sup>  |
|                    | s                            | d                  | d                   | bt                  | bdd                | dt                  | bd                 | bd                  | bd                 | bd                 | bd                  | bd                  | s                   | s                  | s                  |
| Coupling constants |                              |                    |                     |                     |                    |                     |                    |                     |                    |                    |                     |                     | J <sub>13,14'</sub> |                    |                    |
|                    | J <sub>7,7'</sub>            | J <sub>11,12</sub> | J <sub>11,12'</sub> | J <sub>12,12'</sub> | J <sub>12,13</sub> | J <sub>12',13</sub> | J <sub>13,14</sub> | J <sub>14,14'</sub> | J <sub>15,OH</sub> | J <sub>16,17</sub> | J <sub>17,17'</sub> | J <sub>13,14'</sub> | J <sub>13,14'</sub> |                    |                    |
| II <sup>f</sup>    | 19.5                         | 3.5                | 3.5                 | 17.5                | 2.5                | 4.5                 | 0                  | 11.5                | 10.5               | —                  | e                   | —                   | 5.0                 | —                  |                    |
| III                | 19.5                         | 4.0                | 2.5                 | 18.0                | 2.5                | 4.0                 | e                  | e                   | —                  | —                  | 6.4                 | —                   | e                   | —                  |                    |

<sup>a</sup> Signals of protons in positions 1, 2 and 3 could not be assigned; <sup>b</sup> The assignment of the methyl signals can be interchanged; <sup>c</sup> After the addition of trichloroacetyl isocyanate. The NH proton appears as a singlet at  $\delta$  8.43; <sup>d</sup> 17-Methyl group gives a doublet at  $\delta$  1.16 with  $J = 6.4$  Hz;

Chemical shifts or coupling constants were not determined;  $\delta_{J15,17} = 2.0$  and  $J_{15,17} = 2.5$  Hz.

quantitative yield,  $C_{20}H_{28}O_2$ , m.p. 136–137°C. In the infrared spectrum the band of the hydroxyl group disappeared and a peak indicating the presence of a five-m membered cyclic ketone ( $1737\text{ cm}^{-1}$ ) appeared. In the  $^1\text{H}$  NMR spectrum the signals of the exomethylene hydrogens and the  $\text{CH}-\text{O}$  hydrogen disappeared and the signal of the secondary methyl (doublet at  $\delta 1.16$  with  $J = 6.4\text{ Hz}$ ) appeared (Table I). These facts show that the structure of the investigated compound is (*16R*)-*ent*-9(11)-kaurene-6,15-dione (*III*). The *garryfoline*–*cuauchichicine* rearrangement demonstrated unambiguously the *ent*-kaurene skeleton as well as the position and the configuration of the hydroxyl group in compound *II*. This also permits the assignment of the double bond in *II* and *III* into the position between the carbons 9 and 11 and of the carbonyl group into position 6, so that *nardiin* (*II*) must have the structure of *ent*-15 $\alpha$ -hydroxy-9(11),16-kauradien-6-one.

## EXPERIMENTAL

Column chromatography was carried out on silica gel according to Pitra<sup>9</sup>, particle size 60–90  $\mu\text{m}$ , with the addition of 10% of water. Preparative HPLC was carried out on Silpearl for TLC (Kavalier, Votice, Czechoslovakia), in a glass column ( $25 \times 250\text{ mm}$ ) using gradient elution with n-hexane–ethyl acetate, at a 10 ml/min flow rate. A home-made instrument was used and the volume of fractions was 5 ml. Detection of the peak in the fractions was done by TLC. The melting points were measured on a Kofler block, the  $^1\text{H}$  NMR spectra on a Varian XL-200 instrument (200 MHz) in the FT mode, the IR spectra on a Perkin-Elmer 580 spectrophotometer, the mass spectra on an AEI-902 instrument and the CD spectra on a Roussel-Jouan CD-185 spectrophotograph.

### Isolation of *II*

The chloroform extract (39.16 g) of dried *N. scalaris* (4 190 g), collected in June 1976 in Smědava (Jizera mountains), was chromatographed on silica gel with benzene with 1% of ether and then on the HPLC column. Fractions eluted with 4% of ethyl acetate in hexane (50 mg) afforded after crystallization from n-hexane a substance with m.p. 177–180°C, with the composition  $C_{20}H_{28}O_2$ . Mass spectrum: 300 ( $C_{20}H_{28}O_2$ , high resolution), 285 ( $C_{19}H_{25}O_2$ ), 282, 257, 243, 239, 215. IR spectrum,  $\nu_{\text{max}}^{\text{KBr}}\text{ cm}^{-1}$ : 3 460 (OH), 1 689 (C=O), 1 659 (C=C). CD spectrum, ( $c 0.1$ , dioxane):  $\Delta\epsilon_{300} - 2.76$ ,  $\Delta\epsilon_{241} 0$ ,  $\Delta\epsilon_{215} + 14.33$ .  $[\alpha]_D^{22} - 29^\circ$  ( $c 1.2$ , chloroform).  $^1\text{H}$  NMR spectrum see Table I.

### Rearrangement of *II*

Compound *II* (10 mg) in ethyl acetate (6 ml) was stirred for 30 min under hydrogen in the presence of 10% Pd–C (10 mg). After filtration and evaporation of the solvent diketone *III* was obtained, m.p. 136–137°C. IR spectrum,  $\nu_{\text{max}}^{\text{CCl}_4}\text{ cm}^{-1}$ : 1 711 (six-membered cyclic C=O), 1 737 (five-membered cyclic C=O), 1 403 (–CH<sub>2</sub>–CO), 1 632 and 3 040 (C=C–H).  $^1\text{H}$  NMR spectrum see Table I. Composition  $C_{20}H_{28}O_2$  according to high-resolution mass spectrometry.

*Our thanks are due to Dr J. Váňa, Charles University, Prague, for his help in the collection and the identification of the plant material, Dr S. Vašičková for the measurement and the interpretation of the IR and the CD spectra and Dr L. Dolejš for the measurement and the interpretation of the mass spectra (all from our Institute).*

## REFERENCES

1. Hébant C.: *Bryophyt. Bibl.* *13*, 29 (1975).
2. Markham K. R., Porter L. J.: *Prog. Phytochem.* *5*, 181 (1978).
3. Huneck S., Klein E.: *J. Hattori Bot. Lab.* *33*, 1 (1970).
4. Gorham J.: *Phytochemistry* *16*, 249 (1977).
5. Suleiman A. A., Gardsen M., Sutcliffe T. P., Lewis D. H.: *J. Bryol.* *II*, 161 (1980).
6. Beneš J., Vaněk T., Buděšínský M., Herout V.: *Phytochemistry* *20*, 2591 (1981).
7. Barnes M. F., MacMillan J.: *J. Chem. Soc. (C)* *1967*, 361.
8. Connolly J. D., Thornton I. M. S.: *J. Chem. Soc. Perkin 1* *1973*, 736.
9. Pitra J., Štěrba J.: *Chem. Listy* *56*, 544 (1962).

Translated by Ž. Procházka.